A decoupling property of some Poisson structures on Matn×d(C)×Matd×n(C) supporting GL(n,C)×GL(d,C) Poisson–Lie symmetry

نویسندگان

چکیده

We study a holomorphic Poisson structure defined on the linear space $S(n,d):= {\rm Mat}_{n\times d}(\mathbb{C}) \times Mat}_{d\times n}(\mathbb{C})$ that is covariant under natural left actions of standard ${\rm GL}(n,\mathbb{C})$ and GL}(d,\mathbb{C})$ Poisson-Lie groups. The brackets matrix elements contain quadratic constant terms, tensor non-degenerate dense subset. Taking $d=1$ special case gives $S(n,1)$, we construct local map from Cartesian product $d$ independent copies $S(n,1)$ into $S(n,d)$, which diffeomorphism in neighborhood zero. $S(n,d)$ complexification real d}(\mathbb{C})$ constructed by authors Marshall, where similar decoupling was observed. also relate our construction to Arutyunov Olivucci treatment complex trigonometric spin Ruijsenaars-Schneider system Hamiltonian reduction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Symmetry of Some Nano Structures

It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...

متن کامل

on symmetry of some nano structures

it is necessary to generate the automorphism group of a chemical graph in computer-aidedstructure elucidation. an euclidean graph associated with a molecule is defined by a weightedgraph with adjacency matrix m = [dij], where for i≠j, dij is the euclidean distance between thenuclei i and j. in this matrix dii can be taken as zero if all the nuclei are equivalent. otherwise,one may introduce dif...

متن کامل

Poisson Structures on Orbifolds

In this paper, we compute the Gerstenhaber bracket on the Hochschild cohomology of C∞(M)⋊Γ. Using this computation, we classify all the noncommutative Poisson structures on C∞(M) ⋊ Γ when M is a symplectic manifold. We provide examples of deformation quantizations of these noncommutative Poisson structures.

متن کامل

Some Notes on Property A

Introduction The coarse Baum-Connes conjecture states that a certain coarse assembly map µ : KX * (X) → K * (C * (X)) is an isomorphism (see for example [Roe96] or the piece by N. Higson and J. Roe in [FRR95]). It has many important consequences including one of the main motivations for this piece: a descent technique connects it to injectivity of the ('ordinary') Baum-Connes assembly map µ : K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2021

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0035935